Undergraduate Catalog 2005-2007
UDM Academic PoliciesCourse DescriptionsList of All ProgramsFaculty


EE 350 Network Theory I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
PHY 162 (Co-requisite)
MTH 372 (Co-requisite)
Co-requisites: PHY 162 and MTH 372


Co-requisite: PHY 162, MTH 372. Electrical circuit elements, network theorems, techniques of circuit analysis and design: transient and steady-state responses of RC, RL, and RLC circuits.
30000

EE 352 Network Theory II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 350
Prerequisite: EE 350.


Steady-state analysis and design of single and three phase circuits, resonant circuits, filters. Laplace and Fourier techniques, analysis and design of two-port networks.
30000

EE 356 Electronics I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 352 (Co-requisite)
Co-requisite: EE 352.


Study of the underlying physical behavior of semiconductor devices, circuit modelling of active devices. Analysis and design of diode and transistor circuits: power supplies, basic amplifier configurations, bias and stability analysis, multi-stage amplifiers.
30000

EE 358 Electronics II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 356
Prerequisite: EE 356.


Analysis and design of power amplifiers, differential and operational amplifiers. Frequency response of amplifiers and analysis of electronic feedback circuits.
30000

EE 361 Circuits Laboratory
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 352 (Co-requisite)
Co-requisite: EE 352.


Introduction to electrical instrumentation, measurement of voltage, current and transient response of RLC circuits, design and testing of RLC circuits; AC circuits, measurement of frequency response of networks; design and testing of filter circuits
21003

EE 363 Electronics Laboratory
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 358 (Co-requisite)
Co-requisite: EE 358


Measurement of diode and transistor characteristics, design, simulation and testing of diode circuits, single and multiple stages amplifiers, power amplifiers, differential amplifiers and operational amplifier circuits.
21003

EE 364 Digital Logic Circuits I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:

Sophomore Standing.


Binary numbers and arithmetic. Fundamentals of Boolean algebra. Basic logic circuit concepts. Karnaugh maps. Multiplexers, decoders, flip-flops, counters, PLDs and FPGAs. Design of sequential circuits, computer modeling and simulation of digital systems.
30000

EE 365 Digital Logic Circuits Laboratory
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 364 (Co-requisite)
Co-requisite: EE 364.


Design and implementation of combinational and sequential logic circuits including counters, adders, shift registers, etc. Computer simulation of logic circuits.
10003

EE 366 Electromagnetics I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
MTH 241
PHY 162
Prerequisite: MTH 241 and PHY 162.


Vector analysis, electrostatics, conductor and dielectric, magnetostatics, magnetic materials, boundary conditions and boundary value problems, Maxwell?s equations.
30000

EE 368 Solid State I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
MTH 372
PHY 366
Prerequisites: MTH 372 and PHY 366.


Introduction to the physical principles of modern semiconductor devices. Quantum mechanical descriptions of energy bands and conduction processes in n and p type semiconductors. Physics of equilibrium and biased p-n junctions. Effects of junction capacitance.
30000

EE 372 Electromechanical Energy Conversion
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 352
EE 366
Prerequisite: EE 352, EE 366.


Analysis and design of magnetic circuits, transformers, induction motors, synchronous motors and generators, DC motors and generators.
30000

EE 374 Communication Theory I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
MTH 451
Prerequisite: MTH 451.


Mathematical representation of signals, Fourier transforms. Power spectra, auto-correlation, transmission through linear systems, sampling theory, modulation theory. Analysis and design of modulation systems: amplitude modulation, angle modulation, and pulse modulation.
30000

EE 386 Microprocessors
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 364
Prerequisites: EE 364


Microprocessor evolution, microprocessor and microcomputer organization, assembly language, interrupts, peripherals, interfacing, A/D and D/A systems.
30000

EE 387 Microprocessors Laboratory
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 386 (Co-requisite)
Corequisite: EE 386


Familiarity with the EVB Board, memory, I/O, CPU; assembly language; hardware and software experiments; digital circuit design an interfacing; development systems.
10003

EE 401 Electrical Design I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 358
EE 364
ENL 303
Prerequisites: EE 358, EE 364, ENL 303.


A capstone design course which integrates materials from all areas of Electrical Engineering. This course provides an engineering design experience comparable to that encountered in industry. Students have an opportunity to participate in a creative and realistic design effort requiring written, oral, and visual communication skills, as well as teamwork and planning. The course lectures present discussions on design methodology, designing for mass production, reliability, safety, and ethics among others. A literature search, detailed feasibility study, and an initial design are undertaken.
20000

EE 403 Electrical Design II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
401
Prerequisite: EE 401.


Continuation of EE 401 requiring a completion of the design (and construction) effort and a professional presentation of the results.
30000

EE 454 Fuzzy System Theory & Applications
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
Senior Standing.


A study of the fundamental concepts of fuzzy set theory and its engineering applications. Topics include fuzzy sets and relations, operations on fuzzy sets, fuzzy rules and inference systems, defuzzification methods, selected applications in the area of controls, image processing, etc.
300

EE 458 Electronics III
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 358
Prerequisite: EE 358.


Ideal and non-ideal operational amplifiers, linear and nonlinear op amp circuit analysis and design. Active filter design. Frequency response and noise analysis in op amp circuits. Digital Electronic circuits.
30000

EE 460 Computer-Aided Design of Integrated Circuits
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:

Prerequisite: Senior standing.


Introduction to the basic electrical properties and the technology of fabrication of MOS devices. Automatic layout generation, routing and design simulation with CAD tools using digital logic circuit examples. Case study and design project.
30000

EE 462 Random Variables and Random Processes
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
MTH 427
Prerequisite: Mth 427.


Probability, random variables, distribution and density functions, functions of random variables, joint distributions and density functions. Random processes, autocorrelation and crosscorrelation, linear system response.
30000

EE 464 Hardware Description Languages: VHDL
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 364
Prerequisite: EE 364.


Analysis and modelling of digital systems using hardware programming languages. More specifically VHDL (VHSIC Hardware Description Language) is introduced as a powerful EDA (Electronic Design Automation) tool for the design of complex digital systems. The course explores the design of specific systems ranging from simple counters to complete microprocessors. An industry standard language compiler and simulator are utilized throughout the course. Several ASIC (Application Specific Integrated Circuit) designs are implemented with FPGAs (Field Programmable Gate Arrays) in the laboratory.
30000

EE 466 Electromagnetics II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 366



Maxwell's equations constitutive relations, boundary condition. Poynting theorem. Plane waves, wave polarization, phase and group velocities. Reflection, refraction and attenuation of plane waves in various media. Transmission lines, waveguides and resonators. Antennas and radiation. Wave propagation and radar equation.
300

EE 468 Computer Networking
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:




Study of local area networks (LAN) and wide area networks (WAN). Survey of the state-of-the-art computer network. Topics include networking theory, design approaches, standards, topologies, OSI and TCP/IP, protocols, applications and distributed processing.
30000

EE 469 Computer Networking Laboratory
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 468 (co-requisite)
Co-requisite: EE 468


The Networking Laboratory (NL) will provide students with hands-on design, setup, configuration and managing network devices and their applications. This lab will educate students about the fundamental design, analysis, operation, control and management of networked systems.
10003

EE 470 Control Systems II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
E 322



Advanced study of root locus analysis. Frequency response analysis. Design and compensation techniques. Describing-function analysis of nonlinear control systems. Control system analysis and design using state-space methods.
300

EE 472 State Space Analysis
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
E 322
Prerequisite: E 322.


Introduction to linear operators and linear spaces. State variable description of systems. Solutions for time varying and time invariant cases. Controllability of linear dynamical equations. Irreducible realizations of transfer function matrices. State variable feedback and observers. Stability of linear systems.
30000

EE 474 Communication Theory II
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 374



Digital communication, probability and random variables, mathematical representation of noise, effect of noise upon system performance, pulse amplitude modulation, multiple pulse detection of signals, detection of signals in colored Gaussian noise, estimation of signal parameters.
300

EE 476 Direct Digital Controls
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
E 322
Prerequisites: E 322.


Basic theory of sampling and quantizing, z-transform analysis. System error analysis, modeling and optimal design of discrete data systems by performance indices. Stability of discrete data systems and design compensation.
30000

EE 478 Embedded Systems
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 386
Prerequisite: EE 386


Design of embedded systems (hardware and software). Advanced topics including interupt, multitasking, Programming 68HC12 micro controller in Assembly Language, C, and Forth. An open-ended embedded system design project which requires consideration of alternatives, economic and aesthetic constraints, and detailed system description is compulsory.
30000

EE 479 Embedded Systems Lab
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 478 (co-requisite)
Co-requisite: EE 478


Students will perform advanced interfacing and development in the lab. They are taught a system design methodology based on top-down principles. A semester design/construction project provides the students with an excellent opportunity to develop strengths in embedded system design, construction, testing, and development.
10003

EE 480 Computer Organization and Architecture
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 364
Prerequisite: EE 364


Basic and advanced concepts of CPU design, memory systems, and I/O interfacing. Alternative design and evaluation of the control unit, the arithmetic and logic unit, and memory hierarchy.
30000

EE 484 Electromagnetic Compatibility
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 466
Prerequisite: EE 466.


EMC requirements for electronic systems, non-ideal behavior of passive components, radiated emissions and susceptibility, conducted emissions and susceptibility, crosstalk, shielding, electrostatic discharge, measurements, system design for EMC.
30000

EE 488 Digital Signal Processing I
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 374
Prerequisite: EE 374.


Introduction to Discrete-Time Signals and Systems. Fourier Transforms of Discrete-Time Signals, Discrete Fourier Transform, z transforms. Digital filter design. Implementation using digital signal processors.
30000

EE 490 Radiation and Antennas
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 466
Prerequisite: EE 466.


Radiation from simple sources; directivity, gain, and effective aperture; radiation resistance; linear antennas; mutual coupling; travelling wave antennas; receiving antennas and reciprocity; Friis formula and radar equation; propagation of waves.
30000

EE 492 Digital Image Processing
Credit HoursRecitation/Lecture HoursStudio HoursClinical HoursLab Hours

Prerequisites:
EE 374
MTH 451
Prerequisites: EE 374 and MTH 451.


This course provides an introduction to the basic concepts and techniques of digital image processing and computer vision. Topics include sampling and quantization, image transforms, image enhancement, restoration, and coding.
30000

College of Business Administration

Home | Contacts | Policies | Programs | Website

College of Engineering & Science

Home | Contacts | Policies | Programs | Website

College of Health Professions & McAuley School of Nursing

Home | Contacts | Policies | Programs | Website

College of Liberal Arts & Education

Home | Contacts | Policies | Programs | Website

School of Architecture

Home | Contacts | Policies | Programs | Website

School of Dentistry

Home | Contacts | Policies | Programs | Website

School of Law

Home | Contacts | Policies | Programs | Website



For more information about UDM, or to apply online, go to www.udmercy.edu/apply.


Print Friendly Print-friendly