EE 350 Network Theory I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
PHY 162 (Corequisite)
MTH 372 (Corequisite)
Corequisites: PHY 162 and MTH 372
Corequisite: PHY 162, MTH 372. Electrical circuit elements, network theorems, techniques of circuit analysis and design: transient and steadystate responses of RC, RL, and RLC circuits.  3  0  0  0  0 
EE 352 Network Theory II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 350
Prerequisite: EE 350.
Steadystate analysis and design of single and three phase circuits, resonant circuits, filters. Laplace and Fourier techniques, analysis and design of twoport networks.  3  0  0  0  0 
EE 356 Electronics I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 352 (Corequisite)
Corequisite: EE 352.
Study of the underlying physical behavior of semiconductor devices, circuit modelling of active devices. Analysis and design of diode and transistor circuits: power supplies, basic amplifier configurations, bias and stability analysis, multistage amplifiers.  3  0  0  0  0 
EE 358 Electronics II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 356
Prerequisite: EE 356.
Analysis and design of power amplifiers, differential and operational amplifiers. Frequency response of amplifiers and analysis of electronic feedback circuits.  3  0  0  0  0 
EE 361 Circuits Laboratory
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 352 (Corequisite)
Corequisite: EE 352.
Introduction to electrical instrumentation, measurement of voltage, current and transient response of RLC circuits, design and testing of RLC circuits; AC circuits, measurement of frequency response of networks; design and testing of filter circuits  2  1  0  0  3 
EE 363 Electronics Laboratory
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 358 (Corequisite)
Corequisite: EE 358
Measurement of diode and transistor characteristics, design, simulation and testing of diode circuits, single and multiple stages amplifiers, power amplifiers, differential amplifiers and operational amplifier circuits.  2  1  0  0  3 
EE 364 Digital Logic Circuits I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
Sophomore Standing.
Binary numbers and arithmetic. Fundamentals of Boolean algebra. Basic logic circuit concepts. Karnaugh maps. Multiplexers, decoders, flipflops, counters, PLDs and FPGAs. Design of sequential circuits, computer modeling and simulation of digital systems.  3  0  0  0  0 
EE 365 Digital Logic Circuits Laboratory
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 364 (Corequisite)
Corequisite: EE 364.
Design and implementation of combinational and sequential logic circuits including counters, adders, shift registers, etc. Computer simulation of logic circuits.  1  0  0  0  3 
EE 366 Electromagnetics I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
MTH 241
PHY 162
Prerequisite: MTH 241 and PHY 162.
Vector analysis, electrostatics, conductor and dielectric, magnetostatics, magnetic materials, boundary conditions and boundary value problems, Maxwell?s equations.  3  0  0  0  0 
EE 368 Solid State I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
MTH 372
PHY 366
Prerequisites: MTH 372 and PHY 366.
Introduction to the physical principles of modern semiconductor devices. Quantum mechanical descriptions of energy bands and conduction processes in n and p type semiconductors. Physics of equilibrium and biased pn junctions. Effects of junction capacitance.  3  0  0  0  0 
EE 372 Electromechanical Energy Conversion
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 352
EE 366
Prerequisite: EE 352, EE 366.
Analysis and design of magnetic circuits, transformers, induction motors, synchronous motors and generators, DC motors and generators.  3  0  0  0  0 
EE 374 Communication Theory I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
MTH 451
Prerequisite: MTH 451.
Mathematical representation of signals, Fourier transforms. Power spectra, autocorrelation, transmission through linear systems, sampling theory, modulation theory. Analysis and design of modulation systems: amplitude modulation, angle modulation, and pulse modulation.  3  0  0  0  0 
EE 386 Microprocessors
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 364
Prerequisites: EE 364
Microprocessor evolution, microprocessor and microcomputer organization, assembly language, interrupts, peripherals, interfacing, A/D and D/A systems.  3  0  0  0  0 
EE 387 Microprocessors Laboratory
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 386 (Corequisite)
Corequisite: EE 386
Familiarity with the EVB Board, memory, I/O, CPU; assembly language; hardware and software experiments; digital circuit design an interfacing; development systems.  1  0  0  0  3 
EE 401 Electrical Design I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 358
EE 364
ENL 303
Prerequisites: EE 358, EE 364, ENL 303.
A capstone design course which integrates materials from all areas of Electrical Engineering. This course provides an engineering design experience comparable to that encountered in industry. Students have an opportunity to participate in a creative and realistic design effort requiring written, oral, and visual communication skills, as well as teamwork and planning. The course lectures present discussions on design methodology, designing for mass production, reliability, safety, and ethics among others. A literature search, detailed feasibility study, and an initial design are undertaken.  2  0  0  0  0 
EE 403 Electrical Design II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
401
Prerequisite: EE 401.
Continuation of EE 401 requiring a completion of the design (and construction) effort and a professional presentation of the results.  3  0  0  0  0 
EE 454 Fuzzy System Theory & Applications
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
Senior Standing.
A study of the fundamental concepts of fuzzy set theory and its engineering applications. Topics include fuzzy sets and relations, operations on fuzzy sets, fuzzy rules and inference systems, defuzzification methods, selected applications in the area of controls, image processing, etc.  3  0  0   
EE 458 Electronics III
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 358
Prerequisite: EE 358.
Ideal and nonideal operational amplifiers, linear and nonlinear op amp circuit analysis and design. Active filter design. Frequency response and noise analysis in op amp circuits. Digital Electronic circuits.  3  0  0  0  0 
EE 460 ComputerAided Design of Integrated Circuits
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
Prerequisite: Senior standing.
Introduction to the basic electrical properties and the technology of fabrication of MOS devices. Automatic layout generation, routing and design simulation with CAD tools using digital logic circuit examples. Case study and design project.  3  0  0  0  0 
EE 462 Random Variables and Random Processes
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
MTH 427
Prerequisite: Mth 427.
Probability, random variables, distribution and density functions, functions of random variables, joint distributions and density functions. Random processes, autocorrelation and crosscorrelation, linear system response.  3  0  0  0  0 
EE 464 Hardware Description Languages: VHDL
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 364
Prerequisite: EE 364.
Analysis and modelling of digital systems using hardware programming languages. More specifically VHDL (VHSIC Hardware Description Language) is introduced as a powerful EDA (Electronic Design Automation) tool for the design of complex digital systems. The course explores the design of specific systems ranging from simple counters to complete microprocessors. An industry standard language compiler and simulator are utilized throughout the course. Several ASIC (Application Specific Integrated Circuit) designs are implemented with FPGAs (Field Programmable Gate Arrays) in the laboratory.  3  0  0  0  0 
EE 466 Electromagnetics II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 366
Maxwell's equations constitutive relations, boundary condition. Poynting theorem. Plane waves, wave polarization, phase and group velocities. Reflection, refraction and attenuation of plane waves in various media. Transmission lines, waveguides and resonators. Antennas and radiation. Wave propagation and radar equation.  3  0  0   
EE 468 Computer Networking
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
Study of local area networks (LAN) and wide area networks (WAN). Survey of the stateoftheart computer network. Topics include networking theory, design approaches, standards, topologies, OSI and TCP/IP, protocols, applications and distributed processing.  3  0  0  0  0 
EE 469 Computer Networking Laboratory
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 468 (corequisite)
Corequisite: EE 468
The Networking Laboratory (NL) will provide students with handson design, setup, configuration and managing network devices and their applications. This lab will educate students about the fundamental design, analysis, operation, control and management of networked systems.  1  0  0  0  3 
EE 470 Control Systems II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
E 322
Advanced study of root locus analysis. Frequency response analysis. Design and compensation techniques. Describingfunction analysis of nonlinear control systems. Control system analysis and design using statespace methods.  3  0  0   
EE 472 State Space Analysis
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
E 322
Prerequisite: E 322.
Introduction to linear operators and linear spaces. State variable description of systems. Solutions for time varying and time invariant cases. Controllability of linear dynamical equations. Irreducible realizations of transfer function matrices. State variable feedback and observers. Stability of linear systems.  3  0  0  0  0 
EE 474 Communication Theory II
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 374
Digital communication, probability and random variables, mathematical representation of noise, effect of noise upon system performance, pulse amplitude modulation, multiple pulse detection of signals, detection of signals in colored Gaussian noise, estimation of signal parameters.  3  0  0   
EE 476 Direct Digital Controls
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
E 322
Prerequisites: E 322.
Basic theory of sampling and quantizing, ztransform analysis. System error analysis, modeling and optimal design of discrete data systems by performance indices. Stability of discrete data systems and design compensation.  3  0  0  0  0 
EE 478 Embedded Systems
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 386
Prerequisite: EE 386
Design of embedded systems (hardware and software). Advanced topics including interupt, multitasking, Programming 68HC12 micro controller in Assembly Language, C, and Forth. An openended embedded system design project which requires consideration of alternatives, economic and aesthetic constraints, and detailed system description is compulsory.  3  0  0  0  0 
EE 479 Embedded Systems Lab
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 478 (corequisite)
Corequisite: EE 478
Students will perform advanced interfacing and development in the lab. They are taught a system design methodology based on topdown principles. A semester design/construction project provides the students with an excellent opportunity to develop strengths in embedded system design, construction, testing, and development.  1  0  0  0  3 
EE 480 Computer Organization and Architecture
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 364
Prerequisite: EE 364
Basic and advanced concepts of CPU design, memory systems, and I/O interfacing. Alternative design and evaluation of the control unit, the arithmetic and logic unit, and memory hierarchy.  3  0  0  0  0 
EE 484 Electromagnetic Compatibility
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 466
Prerequisite: EE 466.
EMC requirements for electronic systems, nonideal behavior of passive components, radiated emissions and susceptibility, conducted emissions and susceptibility, crosstalk, shielding, electrostatic discharge, measurements, system design for EMC.  3  0  0  0  0 
EE 488 Digital Signal Processing I
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 374
Prerequisite: EE 374.
Introduction to DiscreteTime Signals and Systems. Fourier Transforms of DiscreteTime Signals, Discrete Fourier Transform, z transforms. Digital filter design. Implementation using digital signal processors.  3  0  0  0  0 
EE 490 Radiation and Antennas
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 466
Prerequisite: EE 466.
Radiation from simple sources; directivity, gain, and effective aperture; radiation resistance; linear antennas; mutual coupling; travelling wave antennas; receiving antennas and reciprocity; Friis formula and radar equation; propagation of waves.  3  0  0  0  0 
EE 492 Digital Image Processing
 Credit Hours  Recitation/Lecture Hours  Studio Hours  Clinical Hours  Lab Hours 
Prerequisites:
EE 374
MTH 451
Prerequisites: EE 374 and MTH 451.
This course provides an introduction to the basic concepts and techniques of digital image processing and computer vision. Topics include sampling and quantization, image transforms, image enhancement, restoration, and coding.  3  0  0  0  0 

